Servicehandbok

Avd. 2 (25)

Emissionshandbok

USA-utföranden
i Europa

240, 260

voluvo

Denna bok ingår ej i vårt normala system för servicehandböcker, men kan sättas i under flik "Konstruktion och funktion" i pärm 2 (23-29).

Innehåll

Introduktion 2
Specifikationer 3
Avgasåterledning (EGR)
Ändamål, funktion 4
Bortkoppling, inkoppling, funktionsprov 5
Vakuumförstärkare 7
Luftinblåsning (AIR)
Ändamål, funktion 8
Bortkoppling 9
Inkoppling, funktionsprov 10
Luftinblåsning "Pulsair"
Ändamål, funktion, bortkoppling 11
Katalysrenare
Ändamål, funktion 12
Bortkoppling, inkoppling, funktionsprov 13
Lambda-sond
Ändamål, funktion, bortkoppling 14
Beskrivning av lambdasond-systemet 15
Inkoppling 16
Avdunstningskontroll
Andamål, funktion, kolfilter 17
Bränslepåfyllning
Strypning i påfyllningsöppning 18

Introduktion

Introduktion

Allt fler länder sätter upp gränser för avgasutsläpp. System för avgasrening (emissionsutrustning) blir allt vanligare. USA, och särskilt Californien, har varit föregångare. Fordon avsedda för dessa marknader har, tillfälligt eller för alltid, funnit väg till andra marknader. Det finns därför en mängd konstruktioner och kombinationer av system för avgasrening som följt med bilarna. Det har synts angeläget att ge en samlad översikt över dessa system, utan att allt för mycket gå in på detaljer.
I vissa fall är det nödvändigt att koppla bort ett system för avgasrening. Ett exempel är då avsikten är att köra en bil avsedd för blyfritt bränsle på blyat bränsle.
I andra fall kan det vara önskvärt, men inte nödvändigt, att koppla bort avgasreningen. Bilföraren kan finna det fördelaktigt att koppla bort utrustning som inte erfordras enligt gällande lagkrav. Orsaken kan många gånger vara att man lokalt inte har kännedom om system för avgasrening och har en benägenhet att tillskriva dem fel som kanske finns någon annanstans i bilens system. Bortkoppling medför då en felkälla mindre. Det måste dock poängteras att bortkoppling inte får ske så att gällande lagkrav åsidosätts.

I denna handbok beskrivs de olika systemen och ges allmänna anvisningar om ändamål, funktion, identifikation, bortkoppling, återinkoppling och funktionsprovning.
Det finns system för avgasrening som använts så länge att man inte längre tänker på dem som system för avgasrening. Ett sådant system är positiv vevhusventilation.
I denna bok behandlas därför endast de system som i dag betraktas som aktiva, nämligen:
Avgasåterledning (EGR) av två huvudtyper:

- Till/från
- Steglös

Luftinblåsning (AIR) av två huvudtyper:

- Luftpump
- "Pulsair"

Katalysrenare

Lamdasond-system
Avdunstningskontroll
För att underlätta identifiering har i många fall de amerikanska benämningarna angetts inom parentes.

Aktiva system för avgasrening

Avgasåterledning (EGR) Typ "till / från" eller steglös". Bortkoppling inte nödvändig vid övergång till annat bränsle.

Luftinblåsning (AIR) Typ luftpump eller "Pulsair". Bortkoppling inte nödvändig vid övergång till annat bränsle.

Katalysrenare

Fordrar blyfritt bränsle. Katalysrenaren måste tas bort om blyat bränsle ska användas, annars förstörs den.

Lambdasond-systemet

Fordrar blyfritt bränsle. Själva givaren i avgasröret (lambda-sonden) måste tas bort eftersom den i annat fall kommer att få beläggningar av bly och sedan inte kan användas om återgång ska ske.

Observera dock att lambdasonden arbetar tillsammans med speciell katalysrenare och att även denna måste tas bort. I detta fall är det alltid fråga om en kombination av två olika avgasreningssystem.

Avdunstningskontroll

Bilar för USA, Canada, Japan och Australien är försedda med ett slutet avdunstningssystem. När bilen används inom dessa länder får systemet inte ändras. Volvo rekommenderar i dessa fall inte montering av extravärmare.
I andra länder kan extravärmare monteras, men systemet måste då ändras på grund av brandrisken.
Vid användning utan extravärmare är det inte nödvändigt att ändra systemet.

Specifikationer

Typ	Motor	Årsmodell	Tomgångsvarvtal			CO-värde (vid tomgång)	Tändinställning ${ }^{1)}$
164	B30F	1975	Man. ${ }^{\text {5 }}$ Auto	$\begin{aligned} & 15 \\ & 13,3 \end{aligned}$	$\begin{aligned} & 900 \\ & 800 \end{aligned}$	1,0-1,5 \% ${ }^{2)}$	10° f.ö.d.
240	B20F	1975	Man. Auto	$\begin{aligned} & 15 \\ & 13,3 \end{aligned}$	$\begin{aligned} & 900 \\ & 800 \end{aligned}$	1,0-1,5 \% ${ }^{2)}$	5° f.ö.d.
240	B20F	1976	Man. Auto	$\begin{aligned} & 15 \\ & 14,2 \end{aligned}$	$\begin{aligned} & 900 \\ & 850 \end{aligned}$	1,0-1,5 \% ${ }^{21}$	5° f.ö.d.
240	B21F	1976	Man. Auto	$\begin{aligned} & 15 \\ & 14,2 \end{aligned}$	$\begin{aligned} & 900 \\ & 850 \end{aligned}$	2,0 $\pm 0,3$ \% ${ }^{2)}$	15° f.o.d.
260	B27F	1976		15	900	1,7 $\pm 0,3 \%^{2)}$	$10^{\circ} \mathrm{f.g.d}$.
240	B21F utan Lambda-sond	1977		15	900	1,0 $\pm 0,3 \%^{3)}$	12° f.ö.d.
240	B21F med Lambda-sond	1977		15	900	1,5 $\pm 0,3 \%^{4)}$	12° f.ö.d.
260	B27F	1977		15	900	1,7 $\pm 0,3 \%^{2)}$	10° f.ö.d.
240	$\mathrm{B} 21 \mathrm{~F}$ utan Lambda-sond	1978		15	900	1,0 $\pm 0,3 \%^{31}$	$12^{\circ} \mathrm{f}$.ö.d.
240	B21F med Lambda-sond	1978		15	900	$2,0 \pm \pm_{1,0}^{0,5}{ }^{4)}$	12° f.ö.d.
260	B27F utan Lambda-sond	1978		15	900	1,0 $\pm 0,3 \%^{3)}$	10° f.ö.d.
260	B27F med Lambda-sond	1978		15	900	$1,0 \pm 0,3 \%^{4)}$	10° f.ö.d.
240	$\mathrm{B} 21 \mathrm{~F}$ utan Lambda-sond	1979		15	900	$1,0 \pm 0,3 \%^{3)}$	10° f.ö.d.
240	B21F med Lambda-sond	1979		15	900	$2,0 \pm_{1,0}^{0,5}{ }^{4)}$	8° f.ö.d.
260	B27F	1979		15	900	1,0 $\pm 0,3 \%^{4)}$	10° f.ö.d.
240	B21F Kanada	1980		15	900	$2,0 \pm 1,0 \%{ }^{4)}$	10° f.ö.d.
240	B21F USA	1980		15,8	950	$2,0 \pm \pm_{1,0}^{0,5}{ }^{4)}$	8° f.ö.d.
260	B28F	1980		15,8	950	1,0 $\pm 0,3 \%^{4)}$	10° f.ö.d.

[^0]Avgasåterledning

Avgasåterledning

(Exhaust Gas Recirculation $=\mathrm{EGR}$)

Ändamål

Avgasåterledning används för att minska mängden kväveoxider $\left(\mathrm{NO}_{\mathrm{x}}\right)$ i avgaserna.
NO_{x} bildas vid de mycket höga temperaturer som kan uppstå i motorns förbränningsrum vid körning under stor belastning.

Funktion

En avsevärd minskning av NO_{x} uppnås med endast liten sänkning av förbränningstemperaturen. Sänkningen erhålles enklast genom att i förbränningsrummet införa en inaktiv gas (inert gas).

Avgaserna består just av förbrukade, relativt inaktiva gaser. Eftersom de finns tillgängliga i överflöd blir det närmast frågan om att använda avgaser i rätt mängd och vid rätt tillfälle.

Utföranden

Avgasåterledning finns i två basutföranden:
A. Typ "till/från".

Vakuum (EGR)-ventilen används här enbart för att öppna eller stänga tillförseln av avgaser. Den manövreras medelst vakuum från motorns inloppsrör.

Eftersom avgasåterledning inte är önskvärd vid tomgång

Principskiss (steglöst), tidigt utförande

1 Luftrenare

2 Magnetventil
3 Vakuumförstärkare
4 Vakuumventil
5 Inloppsrör
6 Grenrör

Principskiss (steglöst), sent utförande
1 Grenrör
2 Inloppsrör
3 Termostatventil
4 Strömfördelare
5 Motorns framdel
6 Fördröjningsventil
7 Vakuumventil
8 Vakuumförstärkare
9 Luftrenare
eller behövs vid låga motortemperaturer finns olika anordningar för att koppla bort vakuum-ventilen då den inte behövs.

1. Vid tidigare utföranden, fram till 1974, användes en mikroströmbrytare för att koppla ur manöver-vakuumet då motorn går på tomgång.
2. Vid senare utförande använder man dessutom en termostatventil som inte öppnar för manöver-vakuumet förrän motorns kylvätska nått en temperatur av cirka $60^{\circ} \mathrm{C}$.

B. Typ "steglös"

Vakuum (EGR)-ventilen används här för att även reglera mängden avgaser som ska släppas fram. För detta använder man en vakuumförstärkare (vacuum amplifier) som styrs av det vakuum som skapas genom venturiverkan i ett speciellt rör före luftintaget till luftrenaren. Vakuumförstärkaren reglerar sedan manövervakuumet som bestämmer vakuumventilens öppningsgrad.
Även här används mikroströmbrytare, magnetventil och termostatventil, var för sig eller i kombination, för att koppla ur vakuumventilen då den inte behövs eller avgasåterledning inte är önskvärd.

Bortkoppling

(Ej nödvändig åtgärd)
Enklaste sättet att sätta avgasåterledningen ur funktion är att koppla bort och plugga vakuumslangen vid vakuumventilen. Vakuumventilen kan då inte fungera.

Sätt också en bit slang på vakuumventilens vakuumuttag och plugga så att skräp och damm inte kan komma in i den.

Inkoppling

För att koppla in avgasåterledningen: återanslut vakuumslangen och utför funktionsprov.

Funktionsprov

1. Kall motor, kylvätsketemperatur under $+55^{\circ} \mathrm{C}$

Vakuumventilen (EGR-ventilen) ska vara stängd vid alla varvtal när motorn är kall.

Starta motorn.
Varva upp motorn och kontrollera att vakuumventilen inte öppnar. Kontrollera genom att iaktta länkstångens rörelse, se bild.
Om vakuumventilen öppnar tyder det på att termostatventilen är felaktig och ska bytas. Termostatventilen ska öppna vid en kylvätsketemperatur på $+55-60^{\circ} \mathrm{C}$.

Avgasåterledning

Vakuumventilen. Läge vid varvtal över tomgång med varm motor

2. Varm motor, kylvätsketemperatur över $+60^{\circ} \mathrm{C}$

Vakuumventilen (EGR-ventilen) ska öppna vid varvtal över tomgång när motorn är varm.

Varmkör motorn.
Öka varvtalet och kontrollera att vakuumventilen öppnar. Om ventilen inte öppnar, felsök enligt anvisningarna nedan och på nästa sida.

Låt motorn gå ner på tomgång och kontrollera att vakuumventilen stänger. Om ventilen inte stänger, ta bort vakuumslangen från ventilen. Stänger ventilen då är vakuumförstärkaren troligtvis felaktig, pröva med en ny. Stänger den inte kärvar ventilen, rengör eller byt ventilen.

ALTERNATIV KONTROLLMETOD

Ett annat sätt är att koppla in det kraftiga vakuum som finns i motorns inloppsrör, för tändförställning vid tomgång, eller till bromsservon.
Om det kopplas till vakuumventilen då motorn går på tomgång ska den börja gå mycket illa, eller stanna.

KONTROLL AV TERMOSTATVENTIL

("wax thermostat")
Motorn ej igång, men varm. Koppla loss vakuumslangen vid vakuumventilen. resp. vakuumförstärkaren (anslutning R). Blås igenom den för att kontrollera att termostaten är öppen och att slangarna inte är tilltäppta.
Om termostaten inte öppnar måste först kontrolleras att temperaturen är tillräckligt hög - i regel minst $60^{\circ} \mathrm{C}$ på kylvätskan - innan den byts.

KONTROLL AV MIKROSTRÖMBRYTARE

("micro switch")
Vid tomgång går ström genom mikroströmbrytaren till magnetventilen.
Vid provning kopplas en av ledningarna till mikroströmbrytaren bort. Koppla in en testlampa i serie med mikroströmbrytaren.
Slå till tändningen, dock utan att starta motorn. Testlampan ska lysa.
Öppna gasspjället sakta och kontrollera att testlampan släcks när spelet mellan skruv och arm är cirka $1,5 \mathrm{~mm}$ (1,5-2,0 mm).

Vakuumförstärkare

("vacuum amplifier")

Typ som användes ungefär 1976-77, motor B21F. För motorer B27F används principiellt motsvarande system.

Märkning av slangar och anslutningar.
R (= Reservoir)
O (= Output)
V (= Venturi)
S (= Spark Advance Connection)
A (= Atmosphere)

Typ som använts under 1978-79, motor B21F. B27F 1979 för USA/Canada har alla lambda-sond (ingen avgasåterledning kombinerad).

KONTROLL AV VAKUUMFÖRSTÄRKARE

Kontrollera att vakuumledningarna är öppna, inte läcker och är rätt kopplade. Se bild på denna sida och sidan 4.

Funktionsprova sedan med motorn igång (och vid arbetstemperatur). Öka varvet från tomgång tills avgasåterledningen kopplar in. Kontrollera att vakuumventilens skaft rör sig (observeras genom "fönstret" på vakuumventilens sida).
Om vakuumsystemet inte fungerar trots att alla ledningar är riktiga, prova med ny vakuumförstärkare.

Luftinblåsning

Luftinblåsning

(Air Injection Reactor $=$ AIR)

Ändamål

Luftinblåsning används för att förbränna oförbrända gaser i de avgaser som lämnar motorn och därigenom minska halten kolväten och kolmonoxid i avgaserna.

Funktion

Denna förbränning påminner mycket om att blåsa luft på
falnande kol. När avgaserna lämnar cylindrarna är de fortfarande mycket heta och ytterligare förbränning kan ske om luft genast sätts till. Annars kyls avgaserna ner och ytterligare förbränning kan inte ske.
För luftinblåsningen används en luftpump, driven av motorn, som blåser in luft i grenrörets ledningar från de olika cylindrarna.

B27

Nästa åtgärd är en säkerhetsåtgärd.
Koppla bort luftslangen vid diverterventilen och plugga den.
Även om backventilen skulle bränna fast eller skadas kan inte baktändningar slå tillbaka och skada diverterventil och luftpump.

Luftinblåsning

Inkoppling

Kontrollera först att luftpumpen sitter ordentligt fast och inte har skakat loss. Lägg därefter på drivremmen och justera remspänningen.
Utför funktionsprovet nedan före det slangen till diverterventilen återansluts.

Funktionsprov

LUFTPUMP

Starta motorn och lyssna på luftpumpen. Den för alltid "kraftigt" oljud, särskilt då den är kall. Normalt stiger ljudets frekvens då motorvarvet ökas.

Vid överdrivet kraftigt oljud måste luftpumpen bytas. Försök inte smörja eller reparera luftpumpen.

DIVERTERVENTIL

1. Låt motorn gå på tomgång. Luft ska blåsa ut endast vid diverterventilens utlopp vid A.
2. Öka motorvarvtalet till 3000-3500 och släpp gasspjället snabbt. Luft ska nu blåsa ut från diverterventilens undre hål vid B.

Vid fel: byt diverterventilen och prova igen.

BACKVENTIL

Blås och sug omväxlande i slangen för att kontrollera om backventilen fungerar.
Byt vid behov.
Koppla därefter in slangen till diverterventilen.

Luftinblåsning typ "Pulsair"

Ändamål

Används för att förbränna oförbrända avgaser i de avgaser som lämnar motorn och därigenom minska halten kolväten och kolmonoxid i avgaserna.

Funktion

Detta luftinblåsningssystem har ingen luftpump utan använder sig av de pulseringar som uppstår i avgassystemet, växlingar mellan över- och undertryck.
Vid undertryck sugs luft in i grenröret.
Vid övertryck förhindrar backventiler att avgaser trycks tillbaka till luftrenaren.

Bilden till vänster visar "pulsair"-systemets funktion.

I denna bild visas "pulsair"-systemets komponenter.

Bortkoppling

Någon särskild anledning att koppla bort systemet finns inte. Skulle det emellertid av någon anledning vara önskvärt bör backventilerna ersättas av motsvarande pluggar, gänga $1 / 2^{\prime \prime} \times 14$. Ta även bort slangarna och plugga luftrenaren.

Katalysrenare

Katalysrenare

("Catalytic converter")
Måste tas bort om bilen ska köras med blyad bensin.

Ändamål

Med 2-vägs katalysrenaren utförs en efterbehandling av kolväten och kolmonoxid som sluppit förbi luftinblåsningssystemet.

Med Volvos " 3 -vägs" katalysrenare som används tillsammans med lambdasondsystemet erhålls dessutom en reducering av kväveoxiderna.

Funktion

Katalysrenaren fungerar mycket fördelaktigt vid nära ideala bränsleluftblandningar. Sådana tillhandahålls då motorn arbetar med bränslesystemet styrt av syrgaskännare i avgassystemet (lambda-sond). I sådant fall kan luftinblåsningen (som reducerar kolväten och kolmonoxid) och avgasåterledningen (som reducerar kväveoxider) avvaras.

Volvo katalysrenare använder de ädla metallerna platina och palladium som katalysatorer. En katalysator är en substans eller ett medium som underlättar en kemisk reaktion utan att själv delta i den eller förbrukas.

Katalysatormetallerna förstörs av vissa ämnen och det är därför nödvändigt att använda oblyad bensin. Bly i små mängder behöver i och för sig inte förstöra katalysrenaren men blyet orsakar lätt överhettning av den. Ofta så mycket att cellstrukturen i den upplöses och innehållet sjunker ihop och blockerar avgaspassagen.
Överhettning av andra orsaker måste också undvikas och följande kan ge några fingervisningar.

Motorn måste vara i god trim så att elektriska systemet eller bränslesystemet inte förorsakar övertemperaturer eller gör att katalysrenaren måste arbeta långt utanför sina normala gränser.
Körningen måste avbrytas om motorn misständer, förlorar kraft eller visar andra felsymptom, såsom för hög motortemperatur, om den stannar upprepade gånger eller baktänder.
Sådana fel kan orsakas av:

- Fel inställning av bränslesystem eller komponenter.
- Felaktig tändinställning.
- Ändring av andra emissionskomponenter eller deras koppling.
Överhettning kan även orsakas av långvarig körning med startmotorn, eller bogsering för att starta motorn, och där motorn under längre tid (mer än en minut) utsätts för fet bränsleblandning och tillfälligt tänder.

B27

Ditsättning

Sedan standard främre avgasrör ersatts med främre avgasrör med katalysrenare, bör funktionen provas.
OBS! Före ombyggnad måste bränslesystemet innehålla enbart blyfritt bränsle. Det kan lämpligen åstadkommas genom spolning eller genom att förbruka några tankfyllningar med blyfritt bränsle.

Funktionsprovning

(Inställning av CO-värde)

Mät CO-halten före katalysrenaren

Anslut CO-mätaren till anslutningen strax före katalysrenaren.

Kontrollera CO-halten, vid behov justera enligt specifikationerna.

OBS! Motorn ska ha normal arbetstemperatur och rätt tomgångsvarv. Egr-ventil, luftinblåsning resp. lambdasond ska vara bortkopplade.

Lambda-sond

("Oxygen sensor feedback system")

Ändamål

Som det engelska namnet anger är det ett "återmatningssystem" där den information om avgasernas sammansättning som lambdasonden erhåller används för att styra bränsletillförseln till insugningsluften. Genom systemet kan variationerna i bränsle/luft hållas mycket små. På så sätt ger det stora möjligheter för efterföljande katalysrenare att utföra ett effektivt arbete.

Systemet som sådant kan inte i sig självt sägas vara ett avgasreningssystem - även om det bidrar till renare avgaser.

Funktion

Som nämnts tidigare i samband med katalysrenare arbetar lambdasond-systemet så effektivt i kombination med Volvos 3 -vägs katalysrenare att både luftinblåsning och avgasåterledning kan avvaras.
Lambdasonden (syrgaskännaren) i avgasröret tål emellertid inte blyad bensin. Blyet orsakar beläggningar och felfunktion.
Om bilen ska köras på blyad bensin måste därför lambdasonden tas bort.

Borttagning

Ta bort lambdasonden

Nyckelvidd 22 mm
Undvik att göra detta arbete då avgasröret är hett.
Lambdasonden har gänga $\mathrm{M} 18 \times 1,5$, gänglängd $8,5 \mathrm{~mm}$. Den måste ersättas av en lämplig plugg.

Plugga hålet för lambdasonden

För detta används lämpligast plugg Volvo detaljnummer 16376-6, gänglängd 10 mm .
Plugg 960632-8 har gänglängd 12 mm och kan användas om minst 2 mm brickor läggs under.
På samma sätt kan i nödfall ett (kasserat) 18 mm tändstift användas.
Viktigt är att inte gängorna sticker in nämnvärt mer än lambdasondens $8,5 \mathrm{~mm}$ då de får beläggningar och kan skada hålets gängor vid borttagning.

Ytterligare åtgärder ska normalt inte behöva vidtas. Då motorn är kall (och lambdasonden ändå inte fungerar) samt vid fel på lambdasonden, kopplar systemet automatiskt in en fast funktion som motsvarar inställningen hos en bil utan lambdasond-system.
Om därför motorn fungerade utan anmärkning före bortkopplingen finns ingen anledning till att den skulle arbeta felaktigt efter det att lambdasonden tagits bort.

Beskrivning av lambdasond-systemet

YUZ $2 \geq 22 z=$

Ditsättning

Sätt dit lambdasonden

24 mm nyckelvidd för plugg, 22 mm för lambdasond. Lambdasondens gängor måste smörjas in med "NeverSeez", före ditsättningen. Annars kan den bränna fast.

Momentdra med 50 Nm (40 ft.lbs.)
Koppla in ledningen.
Ytterligare åtgärder ska normalt inte behöva vidtas. Då lambdasonden uppnått normal arbetstemperatur börjar den automatiskt fungera och reglera bränslesystemet.
Tecken på fel i systemet kan vara:

- Startsvårigheter vid varm motor
- Ojämn tomgång
- Dålig ork, särskilt på tomgång
- Hög bränsleförbrukning

Dessa symptom utmärker flera andra motorfel och det finns ingen anledning att misstänka detta system mer än andra. Snarare tvärtom: lambdasond-systemet har visat sig mycket tillförlitligt.

För att hålla isär tänkbara fel: lyssna först på frekvensventilen (motorn på tomgång och inga yttre störningar som försvårar avlyssningen). Om den surrar ligger felet troligen på annat område.
Mycket höga eller mycket låga CO-värden kan ange fel i systemet. I så fall är det bäst att utföra en komplett systemanalys. Se "Fault Tracing Oxygen Sensor Feedback System", TP 11585 (finns endast i USA-upplaga).

Avdunstningskontroll

("Evaporative Emission Control System")

128712

Principbild

(Flera olika utföranden finns.)

Detta system förhindrar att bensinångor släpps ut i fria luften.
Det består av:

- en expansionstank (-volym) inuti eller intill bränsletanken
- en balansventil med undertrycks- och övertrycksventil nära bränsletanken (tid. utförande)
-slangledning fram till motorrummet och

- ett kolfilter, fyllt med aktivt kol, som suger upp bensinångorna
- en slangledning till inloppsröret som leder bort bensinångorna från kolfiltret när motorn är igång.
-en vakuumventil som styr flödet genom kolfiltret.
OBS! Vid montering av bensindriven extravärmare måste avdunstningskontrollen ändras. Se servicemeddelande grupp 92 nr 3.

Kolfilter

Placerat i motorrummet, behöver numera inte bytas (tidigare varje $75000 \mathrm{~km}=45000$ miles)
Systemet behöver endast normalt underhåll av slangar etc. Ingen anledning att koppla bort det.

Bränslepåfyllning

Fordon avsedda att endast köras på blyfritt bränsle har speciellt konstruerad påfyllningsöppning. Den passar enbart till de speciella munstycken som bensinstationerna i USA använder för oblyat bränsle. Avsikten är att förhindra oavsiktlig fyllning av blybensin.

Till och med 1977 monterades en separat insatt strypning i påfyllningsöppningen. Denna strypning kan lätt tas bort. Ta bort de tre skruvarna som håller flänsen och ta bort strypningen. Den kan lämpligen förvaras i bagageutrymmet för senare ditsättning vid ankomst till USA och övergång till blyfritt bränsle.

Från januari 1978 förses påfyllningsrören med en fast, inbyggd strypning. Rören är dessutom i ett stycke. För att byta till påfyllningsrör utan strypning måste tanken tas bort.

För tillfälligt bruk kan ett mellanstycke användas vid tankning.

vouvo

TP $30061 / 1$
3000.5 .79
Swedish
Printed in Sweden

[^0]: ${ }^{1} \mathrm{~V}$:d varvtal $11,7-13,3 \mathrm{r} / \mathrm{s}(700-800 \mathrm{r} / \mathrm{m})$ och bortkopplad vakuumregulator.
 ${ }^{2)}$ Luftinblåsning och EGR-ventil bortkopplade
 ${ }^{3)}$ EGR-ventil bortkopplad
 ${ }^{4)}$ Lambda-sond bortkopplad
 ${ }^{5)}$ Man. $=$ manuell växellåda Auto $=$ Automatväxellåda

